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Abstract

In this paper, the temperature variation rule of platelike sample in temperature modulated differential scanning calorimetry

(TMDSC) has been drawn with strict mathematical derivation. The obtained analytical result reveals the total variation rule of the

platelike sample from its initial equilibrium state to its steady state. With this temperature variation rule, the variation rules of both

reversible and irreversible heat ¯ows, temperature lag, internal energy and effective speci®c heat of the platelike sample have been

derived and studied as well. If the thermal conductivity of the sample is so great that the temperature gradients within the sample can

be neglected, in this case the temperaturevariation rule derived from the fundamental equation of the temperature distribution of our

TMDSC is the same as the current TMDSC theories. If the modulated amplitude ATs
or modulated frequency! equals zero, it reverts

to the conventional DSC situation, so all the results in the TMDSC model derived in this article are automatically suitable for the

conventional DSC situation and current TMDSC theories. # 1999 Elsevier Science B.V. All rights reserved.

Keywords: Temperature modulated differential scanning calorimetry; Platelike sample; Temperature distribution; Heat ¯ow; Effective speci®c

heat

1. Introduction

Temperature modulated differential scanning

calorimetry (TMDSC) is a powerful thermal analysis

tool, which ®nds much use in various regions. The

study and manufacture of new and effective thermal

analysis apparatus have drawn much attention inter-

nationally. Since Reading [1,18] invented the

TMDSC, the apparatus of TMDSC has been success-

fully commercialized [2±6]. The non-linear heating

rate in TMDSC causes many dif®culties in handling

the data. How to use TMDSC to measure the char-

acteristics of matter effectively, how to solve the

dif®cult problems in dealing data and how to expand

the application of TMDSC are the focuses of studying

in thermal analysis theoretical society.

If the real temperature gradients within the sample

are omitted, the measured sample can be taken as the

sample with a uniform temperature. Under this
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approximate condition, there are some articles dealing

with sample heat capacities, glass-transition tempera-

ture, etc. in TMDSC [7±12]. Just as in the conven-

tional DSC, if the temperature gradients within the

sample are omitted, the measuring errors in TMDSC

will occur unavoidably, which are sometimes rather

large in some case [13]. To minimize the measuring

errors, and to explain the physical meanings of each

eigen point and each eigen curve correctly, it is

necessary to consider the temperature gradients within

the sample [14]. Thus, the variation rule can be

revealed correctly between the temperature distribu-

tion within the sample and the heating form of stove,

and much valuable information can be effectively

obtained from the real thermal analysis curve.

For simplicity, in this paper we assume that the

pan's thermal resistor are so small that can be

neglected. This assumption will not in¯uence the

universality of our following theory.

To enhance the measuring precision and decrease

the measuring error caused by the temperature gra-

dients within the sample, the sample is generally made

in the platelike form and the quantity of sample is as

small as possible within the sensitivity of the appara-

tus. Because in the general thermal apparatus, tem-

perature detector (e.g., thermocouple) is placed in the

central position under the sample box, the measured

temperature actually is the sample temperature in the

center of outer surface, so the real sample can be taken

as a plate, and the boundary effect caused by the ®nite

sample size can be rationally omitted.

In this article, we will use strict mathematical tools

to solve the temperature distribution rule of platelike

sample in TMDSC model. Then, we will use this

temperature variation rule to obtain the strict mathe-

matical expressions of reversible and irreversible heat

¯ows, temperature lag, internal energy and effective

speci®c heat of the platelike sample.

2. Mathematical derivation of temperature
variation rule of platelike sample in
TMDSC model

Assume the sample shape studied in TMDSC is ¯at,

it can be taken as a plate. For a platelike sample, we

only need to study the temperature distribution in the

plate depth direction. In this condition, there is a

thermal transference equation

@T�x; t�
@t

� a2 @
2T�x; t�
@x2

; (1)

where T(x,t) is the sample temperature at the depth x

and at the time t, a2 � �=�cp, � is the thermal con-

ductivity of the sample at temperature T, � the mass

density of sample at temperature T, cp is the specific

heat capacity of sample at temperature T. Here, for

simplicity, the value of �, � and cp are assumed as

constants in the studied temperature interval.

Almost all the existing popular theories of TMDSC

are based on the approximate assumptions that the

values of �, � and cp of the sample are assumed as

constants in the studied temperature interval, and the

temperature gradients within the sample are omitted

which actually implies that the thermal conductivity of

the sample is in®nite. In most situations, the assump-

tions that the �, � and cp of the sample are constant in

the studied temperature interval can be rationally

accepted which may cause little error, but the assump-

tion that the temperature gradients within the sample

are omitted may cause obvious errors, and may cause

rather big errors in some cases. Although there are some

thermal analysis theories dealing with conventional

DSC [15] and TMDSC [16,17] in which the tempera-

ture gradients in the sample are considered, there are

also some obvious approximations in these theories. In

our TMDSC theory, by considering the temperature

gradients within the sample we will try to obtain the

exact temperature distribution within the sample and

its variation rule. Using the obtained temperature

variation rule we can obtain the variation rule of some

physical quantities, so we can improve the existing

analytical theory of TMDSC and obtain more precise

values of physical quantities by TMDSC experiments.

The sample can be taken as a total depth 2l with two

surfaces exposed to the heating surrounding, or

equivalently a total depth l with one adiabatic surface

and another surface exposed to the heating surround-

ing, so we get boundary condition:

Tÿ �
K

@T

@x

� �����
0

� Ts;

@T

@x

����
l

� 0: (2)

where Ts � T0 � qt � ATs
sin!t, Ts is the program-

controlled stove temperature in TMDSC model, T0 the
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initial temperature of stove, q the linear heating rate of

stove, and ATs
and ! are, respectively, amplitude and

frequency of modulated heating rate.

Sample's initial condition is

T�x; 0� � T0; (3)

i.e., at the initial time, whole sample's temperature is

T0.

De®ne

T�x; t� � T0 � qt � ATs
sin!t � D�x; t�; (4)

where �(x,t) is a correction function. Only in the

extremely ideal situation that the thermal conductivity

of the sample is infinite, the correction function �(x,t)

is equal to zero. In the general situation �(x,t) is not

equal to zero, so Eq. (1) can be changed into the

following form:

@D�x; t�
@t

ÿa2 @
2D�x; t�
@x2

� ÿqÿATs
! cos!t: (5)

The boundary condition (2) becomes

Dÿ �
K

@D
@x

� �����
0

� 0;

@D
@x

����
l

� 0; (6)

and the initial condition (3) becomes

D�x; 0� � 0: (7)

By using the method of impulse theorem and de®n-

ing D�x; t� � R t

0
v�x; t; �� d� , Eq. (5) becomes

@v�x; t�
@t

ÿa2 @
2v�x; t�
@x2

� 0: (8)

The boundary condition (6) becomes:

vÿ �
K

@v

@x

� �����
0

� 0;

@v

@x

����
l

� 0; (9)

and the initial condition (7) becomes

v�x; t � � � 0� � ÿqÿATs
! cos!�: (10)

By using variable separation method and de®ning

v(x,t)=U(t)X(x), we have

1

U

dU

dt
� a2

X

d2X

dx2
: (11)

The left side of Eq. (11) is the function of time t, but

the right side is the function of place x. Because the

equation is valid, both side of the equation must be

equal to a constant. De®ning this constant ÿ�2 a2, we

get:

1

U

dU

dt
� a2

X

d2X

dx2
� ÿ�2a2: (12)

From these, the obtained solutions are

U � U�0�eÿ�2a2t; (13)

X�x� � A sin�x� B cos�x: (14)

From a recent boundary condition Xÿ �
K
@X
@x

ÿ �j0 � 0,

we can obtain

B � �

K
A�: (15)

From another boundary condition
dX�x�

dx
jl � 0, we

get

A� cos�lÿB� sin�l � 0: (16)

Combining Eq. (15) with Eq. (16), if follows

�n � K

�
ctg�nl; n � 0; 1; 2; . . .; (17)

i.e., to satisfy the boundary conditions, � must be the

roots of Eq. (17).

So we have a general solution

v�x; t; �� �
X�1
n�0

Cn���eÿ�2
na2�tÿ��

� sin�nx� ��n

K
cos�nx

� �
: (18)

From initial condition
P�1

n�0 Cn��� sin�nx�
� ��n

K
cos�nx� � ÿqÿATs

! cos!� , we get

Cn��� � ÿ 2K2

�n�K2l� l�2�2
n � �K�

� �q� ATs
! cos!��; (19)

where we have used orthogonal relation of the intrinsic

function

Cn���
Z l

0

Xn�x�j j2 dx � ÿ�q� ATs
! cos!��Z l

0

Xn�x� dx; (20)
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Z l

0

Xn�x�j j2 dx � K2l� l�2�2
n � �K

2K2
;Z l

0

Xn�x�dx � 1

�n

: (21)

So we have

v�x; t; �� � ÿ�q� ATs
! cos!��

X�1
n�0

� 2K2

�n�K2l� l�2�2
n � �K� e

ÿ�2
na2�tÿ��Xn�x�:

(22)

Thus, we can obtain the correction function

D�x; t� �
Z t

0

v�x; t; ��d� �
X�1
n�0

Dn�A; !; x; t�

� ÿ
X�1
n�0

2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �
� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

(

� �2
na2�cos!tÿeÿ�

2
na2t� � !sin!t

h i)
;

�0�x�l; t�0�: (23)

�n is defined as follows:

Dn�A; !; x; t� � ÿ 2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �
� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

(

� �2
na2�cos!tÿeÿ�

2
na2t� � !sin!t

h i)
;

�0�x�l; t�0�; (24)

where �n is the nth temperature distribution correc-

tion item of the sample.

Finally, we have

T�x; t� � T0 � qt � ATs
sin!t � D�x; t�

� T0 � qt � ATs
sin!tÿ

X�1
n�0

� 2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �
� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

(

� �2
na2�cos!tÿeÿ�

2
na2t� � !sin!t

h i)
;

(25)

T�x; t� � T0 � qt � ATs
sin!t � D�x; t�

� T0 � qt � ATs
sin!tÿ

X�1
n�0

� 2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �
(25A)

q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!��������������������
�4

na4 � !2

q sin�!t � �n�

8><>:
�ÿATs

!�2
na2eÿ�

2
na2t

�4
na4 � !2

)
; �0�x�l; t�0�;

where �n is defined as

�n�arcsin
�2

na2��������������������
�4

na4 � !2

q : (26)

Eqs. (25) and (25A) are the temperature distribution

rule within the platelike sample in TMDSC model, and

this is the fundamental and most important equation of

our TMDSC theory.

If the time is long enough, the item eÿ�
2
na2t becomes

so small that it can be neglected. In this case the

sample is in the steady state, and Eqs. (25) and (25A)

can be rewritten as
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T �s��x; t� � T0 � qt � ATs
sin!tÿ

X�1
n�0

� 2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �
(25B)

q

�2
na2
� ATs

!

�4
na4 � !2

�2
na2 cos!t � ! sin!t

� �( )
;

T �s��x; t� � T0 � qt � ATs
sin!tÿ

X�1
n�0

� 2K2

�n�K2l� l�2�2
n � �K�

� sin�nx� ��n

K
cos�nx

� �

� q

�2
na2
� ATs

!��������������������
�4

na4 � !2

q sin�!t � �n�

264
375;

�0�x�l; t�0�: (25C)

From Eqs. (25) and (25A) it can be known that the

temperature distribution function T(x,t) is related to

the experimental conditions, such as heating rate of

surrounding, Newton's Law Constant of the sample

box, sample's initial temperature, its speci®c heat, its

thermal conductivity and other factors. When ATs
or !

equals zero, it reverts to the conventional DSC situa-

tion, so the temperature distribution rule within the

sample in the TMDSC model derived in this article

automatically suits the conventional DSC situation.

The temperature gradients within the sample can be

derived from the basic Eqs (25) and (25A):

dT�x; t�
dx

� ÿ
X�1
n�0

2K2

K2l� l�2�2
n � �K

� cos�nxÿ��n

K
sin�nx

� �
� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

(

� �2
na2�cos!tÿeÿ�

2
na2t��! sin!t

h i)
;

(27)

dT�x; t�
dx

�ÿ
X�1
n�0

2K2

K2l� l�2�2
n � �K

cos�nxÿ��n

K
sin�nx

� �

�
(

q

�2
na2
�1ÿeÿ�

2
na2t�� ATs

!�������������������
�4

na4� !2

q sin�!t � �n�

ÿATs
!�2

na2eÿ�
2
na2t

�4
na4 � !2

)
: (27A)

3. Discussion on the temperature distribution rule

To verify Eqs. (25) and (27), now we study a very

special example.

Example 1. Assume that in the studied temperature

interval the sample's thermal conductivity � is 1, its

mass density � is 1, its specific heat cp is 1.5, so we get

a2 � �=�cp � 0:6667. We also assume that sample'

depth l is 0.1. From Eq. (17) we can get the roots,

l0=8.6033357, l1=34.25618387, l2=64.3729811, l3=

95.29334263,l4=126.45287025,l5=157.71284669,etc.

Assume the Newton's constant K is 10, the modu-

lated amplitude and frequency, ATs
and ! are 1 and �,

respectively. We can get a relation between the tem-

perature of stove Ts and the time t as shown in Fig. 1.

From Fig. 2, we can know that �0 is the dominant

item, the sum of other items is just only the 2% of the

value of �0. For simplicity, in this special example we

onlyneedtoconsiderthein¯uenceofthe�0andtheerror

caused by this approximation will be less than 2%.

In this special situation, Eqs. (25) and (25A) can be

rewritten as follows:

T�x; t��T0 � qt � ATs
sin!t � D0�A; !; x; t�

� T0�qt�ATs
sin!tÿ 2K2

�0�K2l�l�2�2
0��K�

� sin�0x� ��0

K
cos�0x

� �
� q

�2
0a2
�1ÿeÿ�

2
0a2t� � ATs

!

�4
0a4 � !2

(

� �2
0a2�cos!tÿeÿ�

2
0a2t� � ! sin!t

h i)
;

(25D)
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T�x; t��T0 � qt � ATs
sin!t � D0�A; !; x; t�

� T0 � qt � ATs
sin!t

ÿ 2K2

�0�K2l� l�2�2
0 � �K�

� sin�0x� ��0

K
cos�0x

� �
� q

�2
0a2
�1ÿeÿ�

2
0a2t�

(

� ATs
!��������������������

�4
0a4 � !2

q sin�!t � ��

ÿATs
!�2

0a2eÿ�
2
0a2t

�4
0a4 � !2

)
; �0�x�l; t�0�;

(25E)

where � is defined as

��arcsin
�2

0a2��������������������
�4

0a4 � !2

q :

Now, we study the relationship between the modu-

lated temperature of the stove and the 0th temperature

distribution correction item of the sample �0. From

Fig. 3, we know there is a phase shift, �+�, between

them. In this example, we have � = 1.507. The main

cause of this phase shift is the sample's limited

thermal conductivity.

Now, we study the temperature gradients within the

sample. Fig. 4(a) shows us the temperature distribu-

tions within the sample at the different time. To

obviously observe the temperature gradients within

the sample and its variation rules, at ®rst, we derive the

Fig. 1. Heating rate in a TMDSC experiment.
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relationship between the temperature gradient and the

depth x. From Eq. (27A), it is easy that the temperature

gradients within the sample can be derived

dT�x; t�
dx

� ÿ 2K2

K2l� l�2�2
0 � �K

� cos�0xÿ��0

K
sin�0x

� �

� q

�2
0a2
�1ÿeÿ�

2
0a2t�

(

� ATs
!��������������������

�4
0a4 � !2

q sin�!t � ��

� ÿATs
!�2

0a2eÿ�
2
0a2t

�4
0a4 � !2

)
; (27B)

dT�x; t�
dx

� ÿ 2K2

K2l� l�2�2
0 � �K

� cos�0xÿ��0

K
sin�0x

� �

� q

�2
0a2
�1ÿeÿ�

2
0a2t�

(

� ATs
!��������������������

�4
0a4 � !2

q sin!�t � ��

ÿATs
!�2

0a2eÿ�
2
0a2t

�4
0a4 � !2

)
;

�0�x�l; t�0�; (27C)

where ���=!, in this example, t=0.48.

Fig. 2. Compare between 0th and 1st correction items.
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From Fig. 4(b) we can obviously know that

there is really temperature gradient within the sample

which varies periodically with the time. In Fig. 4(b),

we can discover the temperature gradient in depth l is

zero, which is the inexorable result obeying the

boundary condition. We also can ®nd out another

interesting phenomenon, i.e., the temperature gradi-

ents variation in a periodic time is asymmetric to the

abscissa. This phenomenon is reasonable, in the

heating process the equivalent heat ¯owing direction

is from stove to sample in a periodic time so the total

temperature gradients within the sample must be

negative.

In Fig. 5, we can ®nd out the in¯uences of the

modulated amplitude and frequency on the 0th tem-

perature distribution correction item of the sample.

From these calculation results, it can be easily known

that bigger the modulated amplitude or the frequency,

the bigger is the variation extent of the 0th temperature

distribution correction item.

If we draw a ®gure about the relationship bet-

ween the sample's surface temperature and the time,

we can get an almost the same curve as shown in

Fig. 1. But if we amplify the curve, we can discover

the temperature difference (i.e. temperature lag)

between the sample's surface and the stove (as shown

in Fig. 6).

From above brief discussion we ®nd out that the

temperature variation rule of platelike sample is self-

satis®ed, and the obtained results in all these ®gures

conform to our previous experiences about the thermal

analysis.

Now, we discuss another representative example.

Example 2. From above discussion, we know that in

the general situation if the thermal conductivity of the

sample is big enough, that is �!�1, in Eq. (25), we

only need to study the dominant item �0 and neglect

other correction items. So Eq. (25) can be simplified as

follows:

Fig. 3. Variation of modulated temperature and sample's surface temperature.
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Fig. 4. Temperature distribution within the sample: (a) temperature distribution within the sample at different time; (b) temperature gradients

within in a periodic time.
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Fig. 5. Inference of the modulated amplitude and frequency: (a) the relation between the modulated amplitude and sample's surface

temperature; (b) the relation between the modulated amplitude and sample's temperature distribution; (c) the relation between the modulated

frequency and sample's surface temperature; (d) the relation between the modulated frequency and sample's temperature distribution.
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Fig. 5. (Continued )
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T�x; t��T0 � qt � ATs
sin!t

ÿ 2K2

�0�K2l� l�2�2
0 � �K�

� sin�0x� ��0

K
cos�0x

� �
� q

�2
0a2
�1ÿeÿ�

2
0a2t� � ATs

!

�4
0a4 � !2

(

� �2
0a2�cos!tÿeÿ�

2
0a2t� � ! sin!t

h i)
� T0 � qt � ATs

sin!tÿ�q� 1ÿeÿt=�
� �

ÿ �ATs
!�

1� !2�2
�cos!tÿeÿt=� � � !� sin!t
h i

:

(25F)

where some de®nitions are used

���2
0a2; (28)

�� 2K�

K2l� l�2�2
0 � �K

; (29)

If the sample's thermal conductivity is suf®ciently

great, the temperature gradients within the sample can

be rationally omitted. In the situation �!�1, from

�0 � K
� ctg�0l, we can get �2

0 � K=�l and

� � ��cpl=K� � �C=KS�, so we obtain � = 1. Thus,

we get

T�0; t� � T0 � qtÿq��1ÿeÿt=��
� ATs

1� !2�2
sin!tÿ!��cos!tÿeÿt=��
h i

� T0 � qtÿq��1ÿeÿt=�� � ATs
!�

1� !2�2
eÿt=�

� ATs������������������
1� !2�2
p sin�!tÿ!��; �t�0�

(30)

This equation is exactly the same as the basic

equation of the current TMDSC theories in which

the temperature gradients are omitted [7]. So it can be

seen that the current TMDSC theories in which tem-

perature gradients are omitted are only special exam-

ples of our general theory.

Fig. 6. Temperature of stove and sample's surface temperature.
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4. Derivation of the variation rules of
temperature lag, heat flows, internal energy
and effective specific heat of platelike sample

Further discussion of Eqs. (25) and (25B) will

give rise to many new subjects, such as the varia-

tion rules of sample's internal energy, the energy

¯ow within the sample, the temperature lag, the

reversible heat ¯ow and the irreversible heat ¯ow

within the sample, etc., so we will discuss them in

the following.

4.1. Temperature lag rule of the platelike sample

First of all, we study the temperature lag dT of

the sample surface temperature with the variation of

surrounding temperature. dT is de®ned as follows:

�T�T�0; t�ÿTs�t� � T�0; t�ÿT0ÿqtÿATs
sin!t:

(31)

According to Eq. (25), Eq. (31) has the form

�T � ÿ2K�
X�1
n�0

1

K2l� l�2�2
n � �K

� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

(

� �2
na2�cos!tÿeÿ�

2
na2t� � ! sin!t

h i)
:

(32)

To simplify the form of Eq. (32), we make the

following de®nitions:

hn� 2K�

K2l� l�2�2
n � �K

; (33)

fn�t�� q

�2
na2
�1ÿeÿ�

2
na2t� � ATs

!

�4
na4 � !2

� ��2
na2�cos !tÿeÿ�

2
na2t� � ! sin!t�:

(34)

Thus Eq. (32) can be written as

�T � ÿ
X�1
n�0

hnfn�t�: (35)

This is the generalized temperature lag rule of the

platelike sample in TMDSC.

Under the steady-state condition, i.e. the term

eÿ�
2
na2t can be omitted, we have

f �s�n �t��
q

�2
na2
� ATs

!

�4
na4� !2

��2
na2cos!t�! sin!t�:

(34A)

Thus, under the steady-state condition, there is

temperature lag rule of the platelike sample

�T �s� � ÿ
X�1
n�0

hnf �s�n �t�: (35A)

4.2. Variation rule of reversible and irreversible

heat flows in the platelike sample

Under the general-state condition, the ideal rever-

sible Newton's heat ¯ow HFrev which is ¯owing into

the sample through the boundary of sample within a

unit area and in a unit time is

HFrev � dQs

dt
� ÿK�T � K

X�1
n�0

hnfn�t�; (36)

where Qs is the heat energy absorbed by the sample.

Irreversible heat ¯ow is

HFn:r: � HFh iÿHFrev; (37)

where HFh i is the standard heat flow detected practi-

cally with the experiment.

Under the steady-state condition, the ideal reversi-

ble Newton's heat ¯ow HF�s�rev which is ¯owing into the

sample through the boundary of sample within a unit

area and in a unit time is

HF�s�rev �
dQ
�s�
s

dt
� ÿK�T �s� � K

X�1
n�0

hnf �s�n �t�:

(36A)

Irreversible heat ¯ow is

HF�s�n:r: � HF�s�
D E

ÿHF�s�rev; (37A)

where HF�S�

 �

is the standard heat flow detected prac-

tically in the steady state in the experiment.
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4.3. Variation rule of internal energy of platelike

sample

In the general situation, there is an equation about

internal energy of sample at time t in a unit volume

E�t�� �cp

l

Z l

0

T�x; t� dx

� �cp

"
�T0 � qt � ATs

sin!t�

ÿ
X�1
n�0

2K2

�2
nl�K2l� l�2�2

n � �K� fn�t�
#

� �cp

"
�T0 � qt � ATs

sin!t�

ÿ
X�1
n�0

K

��2
nl

hnfn�t�
#
: (38)

In the steady-state situation, there is an equation

about internal energy of sample at time t in a unit

volume

E�s��t�� �cp

l

Z l

0

T�s��x; t� dx

� �cp

"
�T0 � qt � ATs

sin!t�

ÿ
X�1
n�0

K

��2
nl

hnf �s�n �t�
#

(38A)

4.4. Variation rule of effective specific heat of

platelike sample

Because of the thermal resistance of the sample and

the non-linear heating or cooling rate in the TMDSC

model, there is a sample's temperature lag effect that

takes place with the variation of surrounding environ-

mental temperature. Because the temperature mea-

sured in the real TMDSC experiment is the

temperature of the sample's outer surface, the mea-

sured speci®c heat in TMDSC is not the same as the

real speci®c heat of the sample. We use equivalent

speci®c heat or effective speci®c heat to obtain the

exact value of the measured sample's speci®c heat in

TMDSC.

The de®nition of effective speci®c heat is

ceff� 1

�

dE�t�
dT�0; t� : (39)

Eq. (39) can also be written

ceff � 1

�

dE�t�
dt

1

dT�0; t�=dt
: (40)

In the general situation, from Eq. (38) , there is a

following relation:

dE�t�
dt
��cp �q�ATs

! cos!t�ÿ
X�1
n�0

K

��2
nl

hngn�t�
" #

;

(41)

where gn (t) is defined as follows:

gn�t�� dfn�t�
dt
� qeÿ�

2
na2t � ATs

!

�4
na4 � !2

� ��2
na2��2

na2eÿ�
2
na2tÿ! sin!t�

� !2 cos!t�: (42)

Because there is a relation

dT�0; t�
dt

� q� ATs
! cos!tÿ

X�1
n�0

hngn�t�; (43)

from Eq. (40), there is a relation as follows:

ceff � cp

q� ATs
! cos!tÿP�1n�0

K
��2

nl
hngn�t�

q� ATs
! cos!tÿP�1n�0 hngn�t�

:

(44)

Under steady-state condition, there is a similar

expression of sample's effective speci®c heat

c
�s�
eff � cp

q� ATs
! cos !tÿP�1n�0

K
��2

nl
hng
�s�
n �t�

q� ATs
! cos !tÿP�1n�0 hng

�s�
n �t�

;

(44A)

where the used definition g
�s�
n �t� is as follows:

g�s�n �t��
df
�s�
n �t�
dt

� ATs
!2

�4
na4 � !2

� �! cos!tÿ�2
na2 sin!t�: (42A)

The expression in Eq. (44) is the effective speci®c

heat of sample in TMDSC. With this expression, the

exact value of real speci®c heat of sample can be
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obtained from the effective speci®c heat measured in

TMDSC. From the expression of effective speci®c

heat of sample, it is obvious that the effective speci®c

heat of sample can vary with the variation of the

modulate amplitude and modulated frequency.

Now, let us reconsider the example two. Consider-

ing an imaginary situation in which the thermal con-

ductivity of the sample is in®nite, i.e. �!�1. In this

ultimate situation, the temperature gradients within

the sample can be neglected. From the Eqs. (33) and

(42) we know when � tends to in®nite, the value of hn

tends to zero and the value of gn (t) is a ®nite quantity,

so we can easily obtain the relation ceff � cp from Eq.

(44). Only in the ultimate situation that the sample's

thermal conductivity is so high that the temperature

gradients within the sample can be neglected, the

value of sample's effective speci®c heat in TMDSC

equals to that of real speci®c heat.

From the above derivation, it is not dif®cult to know

that if the sample's thermal conductivity is not so high

that the temperature gradients within the sample can-

not be neglected. In this general situation, the tem-

perature gradients within the sample must be

considered. The analytical theory here is far more

complex in form than the current theories and we can

anticipate that our analytical theory of TMDSC is

more precise.

All these equations derived here will be veri®ed by

both TMDSC experiments and computer simulations.

The detailed results will be offered in other articles.

5. Conclusion

The strict analytical temperature variation rule of

platelike sample in TMDSC model derived here

reveals the total variation rule of the platelike sample

from its initial equilibrium state to its steady state.

This theory is more general than the current TMDSC

theories. Both current TMDSC theories and conven-

tional DSC theories are included in our theory. The

variation rules of some sample's physical quantities

can be derived from this fundamental temperature

variation rule. The obtained results show that rever-

sible and irreversible heat ¯ows, temperature lag,

internal energy and effective speci®c heat of the plate-

like sample are functions of experimental conditions,

such as modulated amplitude and modulated fre-

quency. So if we use TMDSC to obtain the character-

istics of the matter we must deal with the experimental

data according to corresponding physical rules. In the

general situation, the sample's thermal conductivity is

not great enough, so the effects caused by temperature

gradients cannot be omitted. All the experimental data

obtained in the TMDSC must be dealt carefully with

appropriate calibration methods such as considering

the temperature gradients within the sample.
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